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prediction of barrier height, position, and shape in the cases where 
the reaction coordinate can be expressed in terms of three sta­
tionary points (i.e., reactants, transition state or intermediate, and 
products). The fact that the "intrinsic" component of the cross 
reaction may be the average of the corresponding identity com­
ponents and that h2 is strongly dominated by the quadratic and 
quartic contributions is particularly significant and may indicate 
that many chemical processes are describable as first- or low-order 
perturbations. This speculation will be explored in future work.15,21 
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I. Introduction 

A. Barriers to Internal Rotation and General Rate-Equilibrium 
Expressions. Several approaches are currently in use for ap­
proximating activation energies of reaction pathways, including 
equations by London-Eyring-Polanyi-Sato (LEPS),1 Johnston 
and Parr,2 Marcus,3 Murdoch and Magnoli,4a'b Rehm and Weller,5 
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Abstract: In the past, there has been extensive interest in applying the Marcus equation to electron-, atom-, proton-transfer 
reactions, nucleophilic substitutions, and other types of group-transfer reactions (e.g., A-B + C -».A + B-C) which are associated 
with related identity reactions (e.g., A-B + A - • A + B-A and C-B + C — C + B-C). The barriers of the identity reactions 
can be used to obtain the intrinsic barrier of the unsymmetrical reaction, which allows a prediction of the barrier for the 
unsymmetrical reaction (AEAc*) from the intrinsic barrier (AE0* = 'AIA-EAA* + A^cc'l) and the overall thermodynamics 
of the reaction (AE). The separation of barriers into intrinsic and thermodynamic components facilitates a comparison of 
barriers for reactions of different thermodynamics and allows isolation of factors contributing to the reaction barrier that are 
unrelated to the reaction thermodynamics. Previously, the application of the Marcus equation to reactions that are not associated 
with identity reactions has been hampered due to the lack of any independent method for obtaining the intrinsic barrier. In 
the present paper, a new method is presented for obtaining the intrinsic barrier for an arbitrary reaction. The method is applied 
to 338 computed and experimental barriers to internal rotation, and it is shown that the barriers to internal rotation are 
well-described by the overall thermodynamics of the rotation and the intrinsic barrier through equations similar to the Marcus 
equation. It is demonstrated that a principle reason for the success of the Marcus-like equations in predicting barrier heights 
and positions is that the portion of the reaction coordinate covering three stationary points (reactant, transition state or stable 
intermediate, product) is closely represented by a low-order Fourier series. This feature suggests that Marcus-like equations 
can be successfully employed for predicting barrier heights and barrier positions for processes that have no associated identity 
reactions (e.g., pericyclic reactions and addition-eliminations). The results, as well as previous work, suggest that simple extensions 
of the Marcus equation can be used as a general model for chemical reactivity which encompasses both transition states and 
stable intermediates along the reaction coordinate. 
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quantitative expressions for the barrier height can be shown to 
be special cases, or extensions, of eq I,40 where AE is the ther-

AE* = A V ( I - &(T)) + y2A£(l+ ft(r)) (1) 

modynamic energy difference between reactants and products, 
g\ and g2 are odd and even functions of T, and AE0* is the intrinsic 
barrier.3 These various expressions for the barrier height differ 
only by the choice of functions gx(r) and g2(r) in eq 1. For 
example, when g{ (T) = T = l/4AE/AE0* and g2(r) = r2, Marcus' 
equation 

1 AE2 

AE* = AE0* + 1Z2AE + — • — (2) 
Io AE0* 

is the result. 
A reaction coordinate can be described in terms of a general 

energy expression,4d eq 3. 
E(X) = EXX) - £ ' (0) = 

A£ 0 *0 - h2(X)) + y2AE(l + A1(JT)) (3) 

E'(X) is the energy at a given displacement (X) along the 
reaction coordinate where hx(X) and h2(X) are odd and even 
functions of X, respectively, about X = '/2. AE is the thermo­
dynamic energy difference between reactants and products, and 
AE0* is the intrinsic barrier of the reaction. Note that 

0 < X < 1 (4) 

AE = EXl)-EXO) = E(I) (5) 

A£V = EX1Z2) - EXO) - V2AE = E(Y2) - Y2AE (6) 

h2(Yi) = 0 (7) 

AE0* * 0,A2(I -X) = A2(A) (8) 

AE ^ 0,A1(I -X) = -H1(X) (9) 

Equation 3 gives the energy as a function of distance along the 
reaction coordinate, while eq 1 gives the barrier height as a 
function of AE and AE0*. Equations 1 and 3 have previously been 
applied to electron-, proton-, atom-, and group-transfer reac­
tions,4,14"17 as well as pericyclic reactions.4c,f 

B. Reaction Coordinates. Dissection into Intrinsic and Ther­
modynamic Contributions. For AE ^ 0 and AE0* ^ 0, E(X) (the 
difference between the energy at X and the energy at 0) can be 
divided into an even, intrinsic (or kinetic) component and an odd, 
thermodynamic component.4a The value of the intrinsic (kinetic) 
component at the maximum or minimum is the intrinsic barrier, 
and can be related to whether a reaction is kinetically or ther-
modynamically controlled.4a_c An example of how an arbitrary 
reaction coordinate can be dissected into its even and odd com­
ponents is illustrated in Figure l.4g'h 

We will assume that the reaction coordinate is a continuous 
function of X (0 < X < 1), and it can be expanded in a Taylor 
series about X= l/2. The Taylor series expansion for E(X) will 
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338 (1977). 
(9) (a) E. S. Lewis, Top. Curr. Chem. 74, 31 (1978). (b) E. S. Lewis, C. 

C. Shen, and R. A. More O'Ferrall, J. Chem. Soc, Perkin Trans. 2, 1084 
(1981). 

(10) J. L. Kurz, Chem. Phys. Lett. 57, 243 (1978). 
(11) E. R. Thornton, J. Am. Chem. Soc. 89, 2915 (1967). 
(12) (a) A. A. Zavitsas, J. Am. Chem. Soc. 94, 2779 (1972). (b) A. A. 

Zavitsas and A. A. Melikian, Ibid. 97, 2757 (1975). 
(13) S. Ahrland, J. Chatt, N. R. Davies, and A. A. Williams, / . Chem. 

Soc. 276 (1958). 
(14) E. S. Lewis, S. Kukes and C. D. Slater, J. Am. Chem. Soc. 102, 1619 

(1980). 
(15) M. J. Pellerite and J. I. Brauman, J. Am. Chem. Soc. 102, 5993 

(1980). 
(16) S. Wolfe, D. J. Mitchell, and H. Schlegel, / . Am. Chem. Soc. 103, 

7692,7694(1981). 
(17) (a) W. J. Albery and M. M. Kreevoy, Adv. Phys. Org. Chem. 16, 87 

(1978). (b) W. J. Albery, Faraday Discuss. Chem. Soc. No. 74, 245 (1982). 
(c) R. M. G. Roberts, D. Ostovic, and M. M. Kreevoy, Faraday Discuss. 
Chem. Soc. No. 74, 257 (1982). 
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Figure 1. The reaction coordinate, E(9), is represented by the solid line, 
and £(1 - 8) is given by the dotted line. E(B) can be divided (eq 10 to 
18) into an even, intrinsic contribution (-••-) and an odd thermodynamic 
contribution ( ). The thermodynamic component measures the 
propagation of AE across the reaction coordinate while the intrinsic 
component indicates the magnitude of the barrier in the absence of a 
thermodynamic difference between the two rotomers. This particular 
example is CH3NHOH. 

contain odd and even powers of (X- 1I2). Similarly, E(I-X) 
can be expanded into odd and even powers about X= x/2. When 
X is replaced by 1 - X, the odd terms in the expansion for £ (1 
- X) have the same magnitude, but the opposite sign, as the 
corresponding terms in the expansion for E(X).46 The even terms 
in E(X) and E(I-X) are identical.4"1 With use of 0(X) to 
symbolize the sum of the odd terms in E(X) and S (X) to symbolize 
the sum of the even terms in E(X), 

E(X) = (D(X) + S(X) (10) 

E(I-X)= -0(X) + S(X) (11) 

Figure 1 and eq 10 and 11 show that E(X) and E(I-X) are 
mirror images about X = '/2. Adding eq 10 and eq 11 leads to 

E(X) +E(I-X) 
G(X) j - i - (12) 

while subtracting eq 11 from eq 10 yields 

E(X) -E(I-X) 
0(X) - (13) 

At X = 0, 

£(0) + E(I) 
S(O) = - ^ - ^ +Y2AE (14) 

E(O)-E(I) 
O(0) = - ^ JZ2Ai? (15) 

The intrinsic contribution to E(X) (i.e., the contribution inde­
pendent of the overall thermodynamics) can be defined as 

1(X) = S(X) - Y2AE (16) 

while the thermodynamic contribution to E(X) is 

T(X) = 0(X) + Y2AE (17) 

E(X), E(I - X), 1(X), and T(X) are plotted in Figure 1. E(X) 
can also be rewritten as 

E(X) = AE(Sx/!) + YiAE + AE0*(S2) (18) 

where 

20(X) (S(X) - Y2AE) 
Si = ——z— and S2 = 

1 AE AE0* 
Setting A1 = S1 and A2 = 1 - S 2 gives eq 3, which is a general 
expression for any barrier function where AE ^ 0 and AE0* ^ 
0. Combining eq 6, 12, and 16, we find that AE0* = / (V 2 ) . 
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C. The Marcus Equation and the "Square" Relationship. A 
special case of eq 3 is when h2(X) = /I1(A)2. If E(X) is maximized 
or minimized with respect to X, Marcus' equation 2 results.4*1 

Marcus' equation was originally derived for certain electron-
transfer reactions by using the assumption that there is zero overlap 
between orbitals of the reacting species at the transition state. This 
weak overlap assumption would seem to be a poor description of 
any chemical process in which interactions are changing in going 
from reactants or products to the transition state. However, it 
has been shown that this condition of weak overlap is sufficient, 
but not necessary ,4a_c,ls and that a less restrictive condition is h2(X) 
= Hi(X)2 in eq 3.** In previous work, this condition has been shown 
to be a fair approximation for group-transfer reactions4,14-17 and 
for pericyclic reactions,4e'f and it would be of interest to explore 
the physical significance of A1 (X) and the applicability of the 
"square" relationship to other reactions. In particular, the 
speculation that barriers to internal rotation and conformational 
reorganization can be described in terms of an intrinsic barrier 
and AE has no precedents in previous treatments of internal 
rotation19 or in applications of the Marcus equation4"18 to chemical 
reactivity. Consequently, as part of the effort to determine the 
limits of applicability of Marcus-like equations, an examination 
of barriers to conformational rearrangements seems especially 
worthwhile. In the present paper, the applicability of Marcus-like 
equations to internal rotation is demonstrated, and in section III, 
a sound theoretical basis for this applicability is presented. 

II. Method 
A. Potential Functions for Describing Internal Rotation. The 

potential functions used in this study have been taken from the 
literature and have been obtained from both SCF calculations and 
experimental spectroscopic measurements.19 The general form 
of the potential function is 

E(O) = '/2^i(l - cos 8) + Y2V2(I - cos 20) + 
l/2Vi(\ - cos 30) + K1' sin 0 + V2' sin 18 (19) 

where the V terms are constants and 8 is the rotational angle 
relative to a specific reference point. The molecules investigated 
in this study along with each set of potential constants for eq 19 
are listed in Table I. A typical potential curve is illustrated in 
Figure 2a. 

B. Predictions of the Energies and Positions of Stationary Points 
Using the Marcus Equation. For each molecule, a plot of E(8) 
vs. 8 is divided into successive intervals that each contain only three 
local extrema, as indicated in Figure 2b. The energy function 
in each interval is divided into its intrinsic and thermodynamic 
contribution according to eq 16 and 17, and the intrinsic barrier, 
AE0*, is determined from eq 6 or 16. When these derived intrinsic 
barriers and AE are used, barriers to internal rotation are esti­
mated from Marcus' equation and a quartic extension, 

AE* = 
AE0* + Y2AE + 9AE2Z(I1AE0*) - 27AE4/(164AE0*3) (20) 

The estimated barriers are compared to the barrier fs0bsd, calculated 
from eq 19. A sample of the results is listed in Table II and 
indicates the extent to which barriers to internal rotation can be 

(18) (a) J. R. Murdoch, J. Am. Chem. Soc. 104, 588 (1982). (b) J. R. 
Murdoch and D. E. Magnoli, Ibid. 104, 2465 (1982). (c) J. R. Murdoch and 
D. E. Magnoli, J. Chem. Phys., 11, 4558 (1982). (d) D. E. Magnoli and J. 
R. Murdoch, J. Am. Chem. Soc, in press, (e) J. R. Murdoch, J. Am. Chem. 
Soc, in press. 

(19) (a) L. Radom, W. J. Hehre and J. A. Pople, J. Am. Chem. Soc. 94, 
2371 (1972). (b) L. Radom, W. A. Lathan, W. J. Hehre, and J. A. Pople, 
Ibid. 95, 693 (1973). (c) J. D. Dill, P. V. R. Schleyer, and J. A. Pople, Ibid. 
98, 1663 (1976). (d) L. Radom, P. J. Stiles, and M. A. Vincent, J. MoI. 
Struct. 48, 259 (1978). (e) L. Radom, P. J. Stiles, and M. A. Vincent, J. MoI. 
Struct. 48, 431 (1978). (f) L. Radom, W. A. Lathan, W. J. Hehre, and J. 
A. Pople, Aust. J. Chem. 25, 1601 (1972). (g) J. Tyrrell, / . Am. Chem. Soc. 
98, 5456 (1976). (h) U. Burkert, J. Comput. Chem. 1, 3, 285 (1980). (i) 
P. Palmieri and A. M. Mirri, J. MoI. Struct. 37, 164 (1977). (j) R. Ponec, 
L. Dejmek, and V. Chvalovsky, Collect. Czech. Chem. Commun. 45, 2895 
(1980). (k) L. Dejmek, R. Ponec, and V. Chvalovsky, Ibid. 45, 3510 (1980). 
(1) L. Dejmek, R. Ponec, and V. Chvalovsky, Ibid. 45, 3518 (1980). 

(20) A. R. Miller, J. Am. Chem. Soc. 100, 1984 (1978). 
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Figure 2. (a) The rotational potential curve of FNHNH2. (b) The first 
interval of the potential curve includes three local extrema and is illus­
trated by the solid line. The interval may be dissected into even and odd 
components as in Figure 1 and AE0 ' and AE determined, (c) The next 
set of three local extrema is displayed, and the analysis indicated in 
Figures 1 and 2b is repeated. 

described in terms of an intrinsic barrier and AE through Mar­
cus-like equations. 

The angles corresponding to the maximum and minimum en­
ergy states are obtained from eq 19 and are also estimated by using 
several approximations:21 

X\i 

1 Miller 

SAE0* 

Xp-l/2* ~ 

V AE*) 

V ^AE0*) 

Y + V^oV/ 

(21)3 '21 

(22)20,21 

(23)' i,g,21 



4738 / . Am. Chem. Soc, Vol. 106, No. 17, 1984 Chen and Murdoch 

•Xp-2 ~ 

\ l + 4AE0*) Y \4AE0*) ) 

1 AE 
(24)4"1*21 

^arccos* = ~ arCCOS 
ir \ 4AV/ 

(25) 4d,21 

>» ,.{ + l AE 

32 AE0* 
(26) 8,21 

Here the X* 's are a fraction between 0 < X* < 1 and refer to the 
fractional displacement along the reaction coordinate. The values 
of X* are transformed back to the original scale in terms of B by 
eq 27, and the 8 values are listed in Table III. The process is 

B1+1* = (O1+2-O1)X*+O1 (27) 

repeated, with the new interval starting at the next local extremum 
(see Figure 2c). 

III. Discussion 

A. The Marcus Equation Is Exact for 2-FoId Rotors. If only 
the first two terms in eq 19 are considered, 

E(B) = 1AV1(I - cos 8) + 1Z2V2(I - cos 20) (28) 

= 1AV1(I + (-cos 8)) + Y2V2(X-(I cos2 B - I)) (29) 

= 1Zi^i(I + (-cos B)) + K 2 ( I - cos2 6) (30) 

where A1
2 = (-cos B)2 = cos2 8 = h2, V1 = AE, V2 = AE0*, then 

the 2-fold rotor potential fits the square relationship, hx
2(X) = 

h2(X), of eq 3 and thus Marcus ' equation 2 predicts the barrier 
to internal rotation exactly. When more cosine and/or sine terms 
are added to eq 28, this may contribute to a deviation from h2(X) 
= h\(X)2 and the Marcus equation may break down. 

B. The Marcus Equation as an Interpolation Formula. Ex­
tensions. The Marcus equation 2 can be obtained from a quadratic 
interpolation scheme employing the second-order polynomial 
P2(X), which satisfies the conditions22 

P2(O) = £ ( 0 ) 

Pi(Vi) = E(Y1) 

P2(X) = £ ( 1 ) 

(31) 

(32) 

(33) 

(21) Previous work defined a sigmoid function*1 

IXF-(1-X)P] 
AiW - —: -T 0 < A- < 1 

[A* + (l-X)p] 
(a) 

where X is the reaction coordinate and Ji1(X) is defined above in eq 3. Setting 
A2(A) - A1(A)2 in eq 3 and maximizing/minimizing AE'(X) with respect to 
X lead to the condition 

1 AE 

Combining eq a and eq b, we obtain 

i AE ixtp - (i - x*n 
4A£0* [X*F + (1 -A" V ] 

(b) 

(C) 

Setting P = 1 and solving for X* gives the Marcus expression for X* (see ref 
4d) eq 21, and P = ' /2 gives the Miller relationship eq 22. Also shown is the 
case for P = I. From eq 30 for a 2-fold rotor potential, we have H1(X) = 
A1(A)2 and A1(A) = -cos 6 with 0 = jrA". As before 

1 AE 
A1(AT*) = = -cos TtX* 

4AE0' 
(d) 

Solving for X* gives eq 25. The approximation XPi' is obtained through 
maximizing/minimizing a fourth-order interpolant described in ref 23. For 
further details on eq a, please see ref 4d. 
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Figure 3. Correlation diagram between predicted values of reaction 
coordinate 8* by using Marcus' equation 21 and those obtained through 
experiment or SCF calculation. The number of points is 338. 

The error in Marcus ' equation can be bound by the magnitude 
of the third derivative22 

max|errorM a r c u s | < — E<3>(0 0 < f < 1 (34) 

and thus Marcus ' equation 2 will accurately predict activation 
energies for all energy functions E(X) that are second order or 
lower. 

(22) We seek to determine the constants a, b, and c for P2(X) = a + bX 
+ cX1 that satisfy eq 31-33. 

P2(O) = a = £(0) = 0 

P2(Y2) = a + (6/2) + (c/4) = E(Y2) 

P2(I) = a + b + c = E(I) 

Solving for a,b, and c in terms of £(0), £('/2). and £(1) and then using the 
substitutions 

A£0
! 

A£ = £(l)-£(0) 

= -l/2£(0) + E(Y2) - Y2E(D 

leads to 

P2(X) = E(O) + (AE + 4AE0')X- 4A£0*A2 

which satisfies the conditions of eq 31-33. Maximizing or minimizing P2(X) 
leads to 

AP2(X)/dX = 4A£0 + AE- SAE0*X* = 0 

and the position for the maximum or minimum, eq 21, is obtained: 

X* 1 l A£ 

2 + 8A£„» 

Then 

and 

1 1 A£2 

P2(X*) = AE0* + - AE + ——- + E(O) 
2 16A£0* 

P2(X*) - E(O) = AE* = A£0* + \ A£ + ^ 7 ^ 

which is Marcus' equation 2. The error of an interpolating polynomial is 

err(A) = E(X) - Pn(X) = ^ - ^ 1 1 ^ - X1); 0 < f < 1 

where X1 are the interpolation points. For Marcus' equation n = 2 

err(A) = E(A) - P2(X) 
3! jJi (X-Xj) 

*|err(A)| < g |£<3)(f)|max|^A-- l-)(X- 1)| < g |£ ( 3 )MI-|^3 ' / J | • 

£*3)(f) 31/21 

fi6r,(0|: 
124 

0 < f < 1 

which is eq 34. 
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Figure 4. Correlation diagram between predicted values of reaction 
coordinates 6* by using the quartic estimate equation 26 and those ob­
tained through experiment or SCF calculation. The number of points 
is 338. 

A higher order interpolation equation can be based on a quartic 
polynomial P4(X), which has the following constraints:23 

P4(O) = £ ( 0 ) (35) 

PAQB = E(1A) (36) 

P4(I) = £(1) (37) 

JY(O) = JVU) = 0 (38) 
where the new constraints imposed are that the slopes at the 
beginning and the end of the interval vanish. Note that for 

(23) We seek to determine 

Pt(X) = a + bX+ cX2 + dX1+fxi 

which satisfies eq 35-38. 
P4(O) = a = £(0) = 0 

P«(ft)-«-f + f + f + £-S(fc> 
P4(I) = a + b + c + d+f- E(I) 

PU(O) = b = 0 

P'4(l) = b + 2c + 3d + Af = 0 

Solving for a, b, c, d, and/in terms of £(0), E(1Ii), and £(1) and using the 
substitutions 

A£ = £(l)-£(0) 

AE0' =-W2E(O)+ EW2)-V2E(I) 

lead to 

P4(X) = E(O) + (3A£ + 16AE0^X2 - (2AE + 32AE0')X
3 + 16AE0'X* 

which satisfies the constraints of eq 35-38. Maximizing or minimizing P4(X) 
leads to 
6P4(X)/dX = 

2(3AE + 16AE0')X - 3(2AE + 32AE0^X2 + 6AAE0
9X3 = 0 

which has X* = 0, '/2 + }/32 AEfAE0*, and 1 as solutions. Then, 

4V 2 32 AE0*) 
E(O) = AE* = 

0 2 128 A£0 ' 65336 A£0*
3 

which is eq 20. The associated error is 
£«(f ) 4 

err (X) = E(X) - P4(X) = —Tr-U(X - X1) 

5! j-o ' 

max|err (X)) < ^ |£<»(n|max|*.A-(jV - ^j(X- I)(X- 1)| 

51/2 5'/2 120 
£(5>(f) 

1 

|£(5)(f)l 

13416 
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potential functions such as eq 19, P4 (0) and /Y(I) always equal 
zero. In other examples involving group-transfer reactions, the 
conditions do not hold,48 and consequently, eq 38 should be re­
placed by an appropriate alternative. By use of eq 35-38, a 
fourth-order potential function can be obtained,23 and from this, 
eq 20, the quartic extension can also be obtained. The error 
associated with eq 20 is given by23 

max|error/.J < 
1 

13416 
k(5)(f) 0 < f < 1 (39) 

which is eq 39. 

as long as the range 1(3/16HAEZAiV)I < 1 is obeyed. Due to 
the higher order interpolation scheme on which eq 20 is based 
and also due to the fact that the constraints of eq 35-38 are met 
by the potential surfaces generated from eq 19, it is not surprising 
that eq 20 gives more accurate results than the Marcus equation, 
particularly for values of X* (Figures 3, 4). 

For X* close to 1J2, all interpolation schemes work well, since 
the Taylor series error term (X* - '/2) becomes small. For values 
of X* away from X* = '/2- the higher order interpolation, eq 20, 
would be expected to work better, as observed (Figures 3, 4). 

In applying an interpolation scheme to predict energies asso­
ciated with points on a potential surface, it is important to rec­
ognize that an «th-order interpolation formula is not equivalent 
to keeping the terms up to nth order in a Taylor series expansion 
of the exact potential surface. It is widely known24 that nth, or 
even lower, order polynomials can often be found that give a 
substantially better fit over the entire domain of the function than 

(24) B. Carnahan, H. A. Luthor, and J. D. Wilkes, "Applied Numerical 
Methods", Wiley, New York, 1969. 

(25) For a general discussion of obtaining intrinsic barriers from A£* and 
AE measurements see (a) J. R. Murdoch, /. Am. Chem. Soc. 94, 4410 (1972). 
(b) J. R. Murdoch, /. Am. Chem. Soc. 102, 71 (1980). (c) J. R. Murdoch, 
J. Phys. Chem., 87, 1571 (1983). (d) J. R. Murdoch, unpublished data. 
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Table I. Potential Constants (kcal/mol) Obtained in the Literature0 

molecule V1 V1 V3 V1' V2' ref 

CH3CH2NH2 

FCH2NH2 

CH3CH2OH 
FCH2OH 
NH2NH2 

CH3NHNH2 

FNHNH2 

NH2OH 
NH2OCH3 

NH2OF 
CH3NHOH 
FNHOH 
HOOH 
CH3OOH 
FOOH 
LiCH2OH 
HBeCH2OH 
H2BCH2OH (perp) 
H2BCH2OH (copl) 
LiCH2NH2 

HBeCH2NH2 

H2BCH2NH2 (peip) 
H2BCH2NH2 (copl) 
(COF)2 

COFCOCl 
(COCl)2 

HOCHO 
CHOCHO 
CH3CH2CHO 
propanol 
ethyl methyl ether 
CH3CH2FH+ 

CH3CH2OCCH2CH3 

CH3CH2CH2CH3 

CH3CH2C=CCH2F 
CH3CH2CH2F 
CH3CH2C=CCH2Li 
CH3CH2CH2Li 
FCH2C=CCH2F 
FCH2CH2F 
LiCH2C=CCH2Li 
LiCH2C=CCH2F 
LiCH2CH2F 
H-CsCCH2NH2 

N=CCH2NH2 

H3SiCH2NH2 

Me3SiCH2NH2 

H3GeCH2NH2 

CH3CH2OH2
 + 

H3SiCH2OH2
 + 

Me3SiCH2OH2
 + 

H3GeCH2OH2
 + 

CH3CH2CH2F(exp) 
FCH2CH2F(exp) 
CH3CH2CH2NH2 (conf IV) 
H3SiCH2CH2NH2 (conf IV) 
H3GeCH2CH2NH2 (conf IV) 
CH3CH2CH2F 
CH3CH2CH2NH2 

H3SiCH2CH2NH2 

H3GeCH2CH2NH2 

CH3CH2OH 
CH3CH2CH2NH2 (conf V) 
H3SiCH2CH2NH2 

H3SiCH2CH2NH2 

H3GeCH2CH2NH2 

CH3CH2CH2OH 
H3SiCH2CH2OH 
H3GeCH2CH2OH 

0.89 
-4.86 
-0 .93 

5.25 
-7 .42 
-6 .84 
-3.70 

8.86 
8.47 

-3.67 
8.03 
4.46 

-7 .08 
-7 .53 

4.20 
-5 .10 
-5.67 
-3.81 
-1.50 

4.76 
4.81 
3.11 
1.45 
0.08 

-0.18 
2.86 
5.75 
5.73 
0.70 

-1 .02 
-5 .19 
-0.614 
-1.67 XlO"2 

-3.19 
7.41 XlO"2 

- 4 . 8 0 X 1 0 ' ' 
-6 .93 X lO ' 2 

0.507 
-0.777 
-4 .68 
-3 .11 

1.53 
7.62 

-2.36 
-1 .69 

3.97 
4.18 
4.92 
1.64 
7.28 
6.79 
9.73 

-3 .22 
-3 .23 

2.57 
2.50 
2.53 
0.920 
0.249 

-4.06 
-9.04 
-2.03 

3.07 
2.50 
4.75 
2.53 

-2.35 
-2 .13 
-2 .13 

0.21 
4.28 

-0.05 
-2 .20 
-7 .92 
-7 .56 
-9.50 

6.62 
5.65 

14.30 
6.65 
7.50 

-3 .51 
-2.94 
-5 .17 

2.05 
0.51 

-1.15 
1.69 

-3.40 
-1.10 

1.54 
-2.37 

4.90 
3.14 
0.87 
8.93 
4.85 
0.23 

-1 .02 
-1 .53 

0.765 
-4 .78 XlO"3 

-1 .43 
7.17 X 1O-3 

-6 .07 X 10"' 
4.06 XlO"2 

0.624 
-0.837 
-2 .72 
-1 .90 

1.71 
6.89 
1.23 
2.25 
6.93 X 10 '2 

0.108 
0.715 

-0.497 
0.760 
0.533 
1.46 

-3.05 
-2 .66 
-0.863 
-0.903 
-0.951 

0.951 
-0.222 
-2.95 
-6 .06 

0.559 
-0.633 
-0.903 
-0.447 
-0.951 

0.688 
0.681 
0.739 

-2 .29 
-2 .01 
-1.14 
-0.96 
-1 .27 
-1.85 
-1.40 
-0.84 
-1.75 
-0.94 
-1 .08 
-0.83 
-0 .22 
-0.37 
-0.13 
-1.27 
-1 .23 
-1 .32 
-1.00 
-2.34 
-2.29 
-2.43 
-2 .18 

0.29 
0.30 
2.04 
0.55 
0.40 
0.59 

-4 .53 
-3 .16 
-0.380 

9.56 X 10"3 

-3.86 
7.17 X 10"3 

-4 .67 
1.91 XlO"2 

-3 .28 
4.78 X l O ' 3 

-4.09 
-2.87 XlO"2 

2.39 XlO"2 

-2 .98 
-1.84 
-1.79 
-2 .01 
-2 .12 
-2.36 
-1.03 
-1.76 
-1.81 
-2.17 
-6 .48 
-2.90 
-1.57 
-1 .59 
-1.58 
-2 .33 
-2.45 
-3.63 
-5.18 
-0.731 
-1 .58 
-1 .59 
-1.45 
-1 .58 
-0 .758 
-0.727 
-0.722 

-0.34 
3.50 

0.35 
-4 .09 

0.158 
0.612 
1.13 

-0.232 

-0 .12 
2.14 

0.16 
-1 .40 

0.153 
0.576 
1.06 

-7.65 X 10-2 

19a 
19a 
19a 
19a 
19a 
19a 
19a 
19a 
19a 
19a 
19a 
19a 
19a 
19a 
19a 
19c 
19c 
19c 
19c 
19c 
19c 
19c 
19c 
19g 
19g 
19g 
19f 
19f 
19f 
19h 
19h 
191 
19d,e 
19d,e 
19d,e 
19d,e 
19d,e 
19d,e 
19d,e 
19d,e 
19d,e 
19d,e 
19d,e 
19i 
19i 
19j,kA 
19j,k,l 
19j,k,l 
19j,k,l 
19j,k,l 
19j,k,l 
19j,k,l 
19b 
19b 
19j,k,l 
19JW 
19j,k,l 
19j,kJ 
19j,k,l 
19j,k,l 
19j,k,l 
19j,k4 
19j,k,l 
19j,kJ 
19j,k,l 
19j,k,l 
19j,k,l 
19j,k,l 
19j,kA 

a Some Constants may be slightly different than those from the original source due to rounding. 

the nth order Taylor series expansion. surface (e.g., eq 19) contains higher order terms (e.g., K3, Vx', 
An important result of the present work is the finding that the V2', etc.). This property of the surfaces examined in the present 

section of a potential energy surface spanning only three stationary and previous48'11 papers is the fundamental reason behind the 
points may be well-described by a quadratic or quartic interpo- success of the Marcus equation, and its extensions, in correlating 
lation technique, even though the equation generating the overall barrier heights and positions through an intrinsic barrier and A£. 
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Table II. A Sample of AE* vs. AE* Predicted by Using Marcus' equation 2 and the Quartic Extension Equation 20 along with the Values 
of AE and AE0* Used to Calculate Them" 

molecule 

FNHNH2 

LiCH2NH2 

CH 3 CH ,CH2 F (exp) 

FCH2CH2F(exp) 

CH3CH2CHO 

H3GeCH2NH2 

start of 
interval 

15.8 
106 
184 
280 

0 
63.3 

159 
0 

67.4 
123 

0 
74.2 

125 
0 

70.8 
117 

0 
45.3 

127 

A^obsd* 

-10.2 
4.01 

-10.9 
17.0 
-3 .73 

6.19 
-0.04 
-9 .83 

5.16 
-5 .03 
-6.16 

1.78 
-1.75 

0.984 
-0.289 

0.595 
-0.938 

5.25 
-1 .76 

^ M a r c u s 

-10.4 
4.27 

-11.1 
17.2 
-3 .21 

6.19 
-0.04 
-9.85 

5.16 
-5 .03 
-6 .18 

1.78 
-1.75 

0.977 
-0.281 

0.595 
-0.860 

5.11 
-1.76 

AE7* 

-10.5 
4.31 

-11.1 
17.3 
-3 .22 

6.25 
-0.04 
-9.87 

5.16 
-5 .03 
-6 .22 

1.78 
-1.75 

0.983 
-0 .282 

0.595 
-0.909 

5.14 
-1.76 

A£0* 

-7 .02 
7.30 

-14.0 
13.6 
-4 .35 

1.81 
-0 .04 
-7 .33 

5.09 
-5 .03 
-3.67 

1.76 
-1.75 

0.578 
-0.420 

0.595 
-2.56 

3.12 
-1 .76 

AE 

-6 .15 
-6 .88 

6.15 
6.88 
2.46 
6.15 
0 

-4.67 
0.13 
0 

-4 .38 
0.03 
0 
0.695 
0.306 
0 
4.32 
3.50 
0 

° All energies are in kcal/mol. AU angles shown are in degrees. 

Table III. A Sample of $* vs. d* Predicted by Using Eq 21-26° 

molecule 

FNHNH2 

LiCH2NH2 

CH3CH2CH2F (exp) 

FCH2CH2F (exp) 

CH3CH2CHO 

H3GeCH2NH2 

0 ob sd 

106 
184 
280 
376 

63.3 
159 
180 

67.4 
123 
180 

74.2 
125 
180 

70.8 
117 
180 

45.3 
127 
180 

W 
118 
172 
269 
385 

68.3 
171 
180 

71.2 
124 
180 

81.3 
127 
180 

76.3 
115 
180 

36.8 
132 
180 

eP='/f 
135 
154 
259 
396 

57.4 
179 
180 

80.5 
124 
180 

96.9 
127 
180 

91.0 
106 
180 

18.1 
148 
180 

Darccos 

112 
180 
273 
381 

72.3 
159 
180 

67.7 
124 
180 

74.7 
127 
180 

70.1 
119 
180 

46.0 
125 
180 

Sp =, 

109 
183 
275 
379 

73.9 
154 
180 

66.3 
124 
180 

72.2 
127 
180 

67.7 
120 
180 
49.5 

122 
180 

9P 4 

114 
178 
272 
382 

71.1 
159 
180 

68.7 
124 
180 

76.7 
127 
180 

71.9 
118 
180 

43.5 
127 
180 

eMiUer 

136 
153 
259 
396 

59.7 
179 
180 

80.5 
124 
180 

97.2 
127 
180 

90.7 
106 
180 

19.2 
146 
180 

0 All numerical entries are in degrees. 

There appear to be three, and possibly more, factors related to 
the success of the low-order interpolation techniques: (1) it has 
been found4,18 that many chemical and structural perturbations 
can apparently be described in terms of first- or low-order per­
turbations to the wavefunction; (2) it has been shown4*1'6'8 that 
expressing the perturbation in terms of a transformed variable 
(e.g., bond order48* or Fourier functions) rather than in Cartesian 
coordinates4*'8 or in degrees may simplify the order of the per­
turbation; and (3) it is known24 that low-order polynomials can 
often be found 18c'd that give a better approximation to a function 
over its entire domain than does a high-order Taylor's expansion. 
In view of recent results,4,18 these questions concerning the role 
of high-order terms in chemical and structural perturbations have 
assumed some significance and will be addressed in more detail 
in future work. 

C. Correlations of Energy Barriers. It is interesting to note 
that the plot (Figure 5) of AE* vs. AE is a scatter diagram: there 
is no obvious general correlation of barrier heights with the 
corresponding thermodynamics of going from one rotamer to 
another. The plot of AE* vs. AE0* (Figure 6) shows a rough 
qualitative correlation, but it is clear that AE or AE0* alone do 
not determine the barrier height. However, AE and AE0* together 
give a good representation of the barriers to internal rotation 
through the Marcus equation or the quartic extension (Figures 
7,8). 

< 
u 
o 
UJ > 
CC 
UJ 
CO 
CD 
O 

10 

-20 
-20 -10 0 10 20 

E MARCUS (KCAL/MOL) 

Figure 7. Plot of activation energies AE" obtained through experiment 
or SCF calculations vs. predicted activation energies by Marcus' equation 
2. The number of points is 338. 

D. Thermodynamic Limits. Finite or Infinite? Marcus' 
equation 2 and the quartic extension equation 20 express the 
barrier height or well depth for a reaction in terms of the intrinsic 
barrier AJE0* and the thermodynamics of the reaction, AE. It is 
instructive to note that the barrier approaches AE from above for 
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Figure 8. Plot of activation energies AE' obtained through experiment 
of SCF calculations vs. predicted activation energies by using the quartic 
extension equation 20. The number of points is 338. 

Table IV. Some Examples Where the Barrier AE* Approaches AE 
for a Finite Ratio AElAE0* ° 

molecule 

H3SiCH2OH 

Me3SiCH2OH 

H3GeCH2OH 

H3GeCH2FH+ 

Me3SiCH2FH+ 

H3SiCH2FH+ 

LiCH2OH 

HBeCH2OH 

interval 

0-92.2 
92.2-180 

0-91.8 
91.8-180 

0-96.3 
96.3-180 

0-113 
113-180 

0-97.4 
97.4-180 

0-104 
104-180 

0-74.3 
74.3-180 

0-85.8 
85.8-180 

AE0* 

-0 .154 
8.0 XlO"2 

-0.171 
0.108 

-0.241 
-6 .4 XlO"3 

-0.240 
-0.458 

6.9X10"2 

-0.254 
2.3X10"2 

-0.347 
-0.107 

0.884 
-8 .6 XlO"2 

0.259 

AE 

-3.25 
-2 .73 
-3.26 
-2 .83 
-4 .68 
-2 .92 
-9.96 
-3.15 
-5 .20 
-3 .39 
-6 .42 
-3.00 
-1 .06 
-5 .31 
-2.87 
-4 .03 

AElAE 

21.0 
-34.2 

19.0 
-26.3 

19.4 
45.4 
41.4 

6.9 
-75.1 

13.3 
-27.7 

8.6 
9.9 

-6 .0 
33.3 

-15.5 
a All energies are in kcal/mol. All angles shown are in degrees. 

endothermic reactions as AE -— 4AE0* and equals AE when AE 
= 4AE0*. Likewise, for exothermic reactions, the barrier ap­
proaches 0 from above as AE -» -4AE0*. Consequently, the 
Marcus equation predicts a barrier to reaction in both directions 
for 

-4|A£0*| < AE < 4\AE0*\ (40) 

In similar fashion, one can show that the quartic polynomial also 
places limits on the range of AE for which a barrier to reaction 
in both directions will exist: 

AE0* KAE1-* 
3 

AE0* 

There is some uncertainty of the behavior of AE* when AE departs 
from these limits, and a discussion of this has been presented.4' 
However, the point to which we wish to draw attention is the 
suggestion from some authors26a_d that AE* —- AE only when 
AEfAE0* —- co. We list in Table IV various molecules where the 
limiting behavior is observed for finite values of AEfAE0*. Criteria 
for observing finite or infinite limits have been given previously.4b 

IV. Conclusions 
A. The Marcus Equation Applies to Conformational Equilibria. 

The intrinsic barrier concept is rapidly gaining recognition as the 
keystone in unravelling the complexities of structure-reactivity 
relationships for proton-transfer reactions,4 SN2 substitution,14"17 

(26) (a) N. Agmon, Chem. Phys. Lett., 45, 343 (1977). (b) N. Agmon, 
J. Chem. Soc, Faraday Trans. 2, 74, 388 (1978). (c) N. Agmon and R. D. 
Levine, /. Chem. Phys., 71, 3034 (1979). (d) N. Agmon and R. D. Levine, 
Isr. J. Chem., 19, 330 (1980). (e) R. A. Marcus, /. Phys. Chem., 72, 891 
(1968). For further discussion, please see ref 4b. 

pericyclic reactions,4e,f E2 eliminations,4* and others.4"1 We can 
now add internal rotational and conformational equilibria to this 
list. 

B. Intrinsic Barriers to Conformational Changes. The fact that 
the Marcus equation, or simple extensions, gives accurate de­
scriptions of barriers to internal rotation is an important result, 
since eq 2 (or eq 20) can be used to convert a measured (or 
calculated) value of AE* and AE into an intrinsic barrier without 
having to evaluate the entire reaction coordinate. The barrier 
height (AE*) and the corresponding value of AE are sufficient 
to obtain the intrinsic barrier.25 The fact that the reaction barrier 
has a dependence on the overall thermodynamics of the reaction 
and that this dependence can be separated from intrinsic con­
tributions, unrelated to the thermodynamics, is a significant result 
and should be useful in comparing barriers to internal rotation 
when the energy difference between the initial and final rotamers 
is a variable. 

C. Group Contributions to Intrinsic Barriers. The fact that 
the Marcus equation gives a good description of the barriers and 
is associated with a second-order description of the potential 
surface is also a significant result. In previous work, it has been 
shown that at the Hartree-Fock level,18 second-order energy 
corrections, due to interchanging structural fragments between 
a series of molecules, can be rigorously associated with contri­
butions from individual fragments. These contributions can be 
additive or nonadditive,18 and an important, but untested, im­
plication is that changes in intrinsic barriers due to structural 
perturbations can be described in terms of group or fragment 
contributions. Such a result would permit the evaluation of in­
trinsic barriers for all reactions in a fashion analogous to that 
presently is use for group-transfer reactions where the intrinsic 
barrier for A-B + C —* A + B-C is obtained by averaging the 
barriers for the thermoneutral reactions A-B + A —• A + B-A 
and C-B + C -* C + B-C. Each identity reaction makes an 
independent contribution to the intrinsic barrier of the unsym-
metrical reaction. 

D. Extension of the Intrinsic Barrier Concept beyond Group-
Transfer Reactions. The present application of the Marcus 
equation and the quartic extension to conformational rear­
rangements marks the first time that the intrinsic barrier concept 
has been successfully applied to reactions that have no associated 
identity reactions. The fundamental basis behind the present 
application lies in the relationship between the function ZJ1(X) and 
the function h2(x) in eq 3. The "square" relationship (h2(x) = 
H1(X)2) leads to the Marcus equation for barrier heights, and one 
common example of the "square" relationship occurs in the form 
of the 2-fold rotor potential. For higher order potential surfaces, 
the "square" relationship still holds to a high degree over the 
portions of the potential surface which encompass three stationary 
points (e.g., reactant, transition state, product), and it is found 
that a quartic extension is an even better description.27 An 
important point is that the specific form of Zi1 or h2 has no effect 
on the relationship between AE*, AE0*, and AE. The key factor 
is how ZJ1 and Zi2 are related to each other, and the specific re­
lationship between Zi1 and x, or between Zi2 and x, is entirely 
irrelevant with respect to predicting barrier heights from the 
Marcus equation or the quartic extension. Consequently, any 
reaction coordinate that can be transformed to a quartic in some 
variable will give a barrier height described by eq 20.28 Since 
many transformations of x are conceivable, it is quite likely that 
the Marcus equation and the higher order extensions will find 
extensive applications to a wide variety of chemical reactions, none 
of which could be anticipated on the basis of Marcus' original 
derivation3 for electron-transfer reactions or on the basis of the 
existing extensions and variations.^2'4"17,26 Important points that 
require further work include the nature and physical significance 

(27) For the quartic polynomial, Pi(X), which is given in ref 23, h\(X) = 
-1 + 6/[X)2 - 4J[X)3, h2(X) = 1 - 16/W[I -/[X)Y, and J[X) is arbitrary. 
For the present application, X = [6 - 6R]/[0P - 8R] (see eq 27) and/[X) = 
X. 

(28) Earlier work by Kurz (ref 10) is especially relevant to the concept of 
using coordinate transformations to generalize barrier relationships. 
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Table V° 

line 

Eb vs. AE 
£"vs. AE0* 
£• vs. Ep4 

E vs. E M a r c u s 

Xc vs. X p 4 

X vs. X M i U e r 

X vs. Xp=1 

Xvs.Xp=0^ 
X vs. XJ^J1 1 0 1 1 8 

theoretically 

R 

0.307287 
0.94727 
0.99914 
0.999096 
0.999568 
0.987339 
0.999282 
0.999566 
0.986496 
0.998008 
1.0 

A 

9 X 10"' 
- 2 XlO"2 

- 4 X 10"' 
- 4 X 1 0 - ' 

0.2540 
0.5574 
0.1646 
9 X 1 0 - ' 
0.238 

- 2 X 10"' 
0.0 

B 

0.18835 
0.866336 
0.993422 
0.990536 
0.998808 
0.997227 
0.999241 
0.999552 
0.998709 
1.00007 
1.0 

x2 

9.38 
2.3569 
5 X 1 0 " ' 
5 X 1 0 " ' 
8.981 

267.2 
14.94 

9.03 
288.13 

41.6 
small 

0A 

0.1651 
8.2 XlO"2 

1.2 X 10"' 
1.2 XlO"2 

0.3809 
2.077 
0.4913 
0.3821 
2.15 
0.819 
0.0 

"B 

3 .2X10- ' 
1.6X10"2 

2 .2X10- ' 
2 .3X10" ' 
1.6 X 10"' 
9 X 1 0 - ' 
2 X 1 0 " ' 
1.6 X 10"' 
9 X l O ' 3 

3.4X10" ' 
0.0 

O 

0.13504 
5 X 1 0 " ' 
6 X 1 0 - ' 
7 X IO"3 

8 XlO"3 

4 .1XlO- 3 

I X l O - ' 
8 X l O - ' 
4 X l O - ' 
1.7 X IO"' 
0.0 

A statistical fit to the line.y =A + Bx has the following associated parameters: A, constant term;B, linear coefficient; a, standard 
deviation; o^, standard deviation in A; ag, standard deviation in B; R, correlation coefficient; and x' 
c n = 338 for the JTs. 

chi square. ° n = 338 for the £"s. 

of transformations involving Cartesian-based coordinates as well 
as the relationship between the intrinsic barrier and quantities 
that form the basis of alternative treatments of chemical reactivity. 
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Abstract: Doubly bonded ditungsten(IV) alkoxides of the type W2Cl4(M-OR)2(OR)2(ROH)2 promote the reductive coupling 
of certain ketones R'R"CO (R' = Me; R" = Me, Et, or University, to afford ditungsten(V) complexes of the type W2Cl4-
( M - O R ) 2 [ R ' R " C ( 0 ) C ( 0 ) R ' R " ] 2 (where R = Et or H-Pr, R' = Me, and R" = Me or Et) or the complex W2Cl4(M-OEt)2-
(OEt)2[Me-H-PrC(O)C(O)Me-ZJ-Pr] depending upon the choice of ketone. These are the first instances where multiply bonded 
dimetal complexes have been found to reductively couple ketones to form metal alkoxides derived from a-diols. Evidence is 
presented to support the notion that the role of the dimetal unit is to provide electrons for the reduction of the ketones and 
to serve as a template for the coupling of the resulting ketyl radicals. In the case of the formation of W2Cl4(M-OR)2-
[R'R"C(0)C(0)R'R"]2, it is believed that the following stoichiometric equation best explains the reaction course: 
2W2Cl4(M-OR)2(OR)2(ROH)2 + 4R'R"CO — W2Cl4(M-OR)2 [R'R"C(0)C(0)R'R"]2 + 4OR- + 4ROH + 2"WV". These 
complexes, which are derivatives of the singly bonded W2

10+ core, have been characterized by using cyclic voltammetry and 
1H NMR spectroscopy and, in the case of W2Cl4(M-0Et)2[R'R"C(0)C(0)R'R"]2 (R' = Me; R" = Me or Et), by X-ray 
crystallography. For W2Cl4(M-OEt)2[(CH3)2C(0)C(0)(CH3)2]2, crystals belong to the space group PlJn with unit cell dimensions 
a = 8.681 (2) A,b= 15.743 (3) A, c = 9.235 (2) A, /3 = 90.98 (2)°, V = 1261.8 (6) A3, and Z = I. In these centrosymmetric 
molecules W-W = 2.701 (1) A, W-OEt = 2.05 [2] A, W-O7 = 1.82 [1] A, and W-Cl = 2.364 [7] A. The conformation 

• i 

of the WWOCCO ring is unusual and indicates strain, but nevertheless, it is kinetically inert toward replacement by other 
RO" groups. W2Cl4(M-OEt)2[(CH3)(C2H5)C(0)C(0)(CH3)(C2H5)]2 also forms monoclinic crystals in space group PlxJn 
with unit cell dimensions a = 10.660 (10) A, b = 12.311 (8) A, c = 11.268 (9) A, /3 = 102.23 (2)°, V= 1452 (2) A3, and 
Z = I. The molecular dimensions are very similar to those for the first molecule. The methyl and ethyl groups are disordered 
in such a way as to indicate that there is little or no stereospecificity in the coupling of the (CH3)(C2H5)CO molecules. 

The ditungsten(IV) alkoxides W2Cl4(M-OR)2(OR)2(ROH)2
2'3 

constitute the most extensive series of doubly bonded dimetal 
complexes so far discovered.4 The most important chemical 
properties of this class of complexes are (1) the lability of the 

(1) (a) Purdue University, (b) Texas A&M University. 
(2) Anderson, L. B.; Cotton, F. A.; DeMarco, D.; Fang, A.; Ilsley, W. H.; 

Kolthammer, B. W. S.; Walton, R. A. J. Am. Chem. Soc. 1981, 103, 5078. 
(3) Cotton, F. A.; DeMarco, D.; Falvello, L. R.; Fredrich, M. F.; Walton, 

R. A. J. Am. Chem. Soc. 1983, 105, 3088. 
(4) Cotton, F. A.; Walton, R. A. "Multiple Bonds Between Metal Atoms"; 

Wiley: New York, 1982. 

terminal OR and ROH ligands to exchange by other alcohol 
ligands,3 (2) the ready displacement of the ROH ligands by other 
neutral donors, such as pyridine and other nitrogen donors,5,6 and 
(3) their facile oxidation to the singly bonded ditungsten(V) 
alkoxides W2Cl4(M-OR)2(OR)4.

2'3,7 The latter two-electron ox­
idation proceeds formally with the loss of the two alcohol protons 

(5) Reagan, W. J.; Brubaker, C. H., Jr. Inorg. Chem. 1970, 9, 827. 
(6) DeMarco, D.; Harwood, W. S.; Walton, R. A., unpublished observa­

tions. 
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